Deterministic Annealing for Multiple-Instance Learning
نویسندگان
چکیده
In this paper we demonstrate how deterministic annealing can be applied to different SVM formulations of the multiple-instance learning (MIL) problem. Our results show that we find better local minima compared to the heuristic methods those problems are usually solved with. However this does not always translate into a better test error suggesting an inadequacy of the objective function. Based on this finding we propose a new objective function which together with the deterministic annealing algorithm finds better local minima and achieves better performance on a set of benchmark datasets. Furthermore the results also show how the structure of MIL datasets influence the performance of MIL algorithms and we discuss how future benchmark datasets for the MIL problem should be designed.
منابع مشابه
Multiple-Instance Learning with Structured Bag Models
Traditional approaches to Multiple-Instance Learning (MIL) operate under the assumption that the instances of a bag are generated independently, and therefore typically learn an instance-level classifier which does not take into account possible dependencies between instances. This assumption is particularly inappropriate in visual data, where spatial dependencies are the norm. We introduce her...
متن کاملGaussian Processes Multiple Instance Learning
This paper proposes a multiple instance learning (MIL) algorithm for Gaussian processes (GP). The GP-MIL model inherits two crucial benefits from GP: (i) a principle manner of learning kernel parameters, and (ii) a probabilistic interpretation (e.g., variance in prediction) that is informative for better understanding of the MIL prediction problem. The bag labeling protocol of the MIL problem, ...
متن کاملDifferent Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کاملComparative Analysis of Genetic Algorithm, Simulated Annealing and Cutting Angle Method for Artificial Neural Networks
Neural network learning is the main essence of ANN. There are many problems associated with the multiple local minima in neural networks. Global optimization methods are capable of finding global optimal solution. In this paper we investigate and present a comparative study for the effects of probabilistic and deterministic global search method for artificial neural network using fully connecte...
متن کاملThe Fokker-planck Machine as Deterministic Ensemble Annealing 1 the Fokker-planck Machine as Deterministic Ensemble Annealing
In this paper we discuss the relation between ensemble learning, deterministic annealing and Markov chain sample and optimization methods on the one hand and the Fokker-Planck Machine on the other hand. The latter was introduced as an alternative method for high-dimensional non-convex optimization, as often encountered in training of neural networks. We demonstrate how the Fokker-Planck Machine...
متن کامل